If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2+9y=0
a = 12; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·12·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*12}=\frac{-18}{24} =-3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*12}=\frac{0}{24} =0 $
| 2z=-26 | | 1=v/7+5 | | 18-3q=6 | | 2(3-(2x+4))-5(x-7)=3x+1 | | j/3− 1=7 | | 55=y-12 | | x+8(3x-9)=672 | | x.3.6+x=11.2 | | 42=g-4 | | j3− 1=7 | | r/2=11 | | 5a/6-7/12+3a/4=-11/6 | | q^2+10q+3=0 | | 2.17=(1.6-x)/x | | (11+x)+7=-2x | | 6x-3+4+x+7=180 | | 9a-11=-109 | | w/3+2=12 | | 5a/6-7/12+3a/4=-2-1/6 | | -(3y-7)=28 | | 13x-16=90 | | 0.8x+1.2=1.2 | | x3+3x=41. | | 2q=7.74 | | 16x-44=-28 | | 3.75=n-5 | | y=60÷5 | | 4x-4=-97 | | z2=2.5 | | x=$49.95+$3.75 | | -2(u+7)=7u-32 | | 4x-5-5=97 |